Families of Complex Hadamard Matrices
نویسندگان
چکیده
What is the dimension of a smooth family of complex Hadamard matrices including the Fourier matrix? We address this problem with a power series expansion. Studying all dimensions up to 100 we find that the first order result is misleading unless the dimension is 6, or a power of a prime. In general the answer depends critically on the prime number decomposition of the dimension. Our results suggest that a general theory is possible. We discuss the case of dimension 12 in detail, and argue that the solution consists of two 13-dimensional families intersecting in a previously known 9-dimensional family. A precise conjecture for all dimensions equal to a prime times another prime squared is formulated. [email protected] [email protected] 1
منابع مشابه
Constructions of Complex Hadamard Matrices via Tiling Abelian Groups
Applications in quantum information theory and quantum tomography have raised current interest in complex Hadamard matrices. In this note we investigate the connection between tiling of Abelian groups and constructions of complex Hadamard matrices. First, we recover a recent very general construction of complex Hadamard matrices due to Dita [2] via a natural tiling construction. Then we find so...
متن کاملParametrizing complex Hadamard matrices
Abstract. The purpose of this paper is to introduce new parametric families of complex Hadamard matrices in two different ways. First, we prove that every real Hadamard matrix of order N ≥ 4 admits an affine orbit. This settles a recent open problem of Tadej and Życzkowski [11], who asked whether a real Hadamard matrix can be isolated among complex ones. In particular, we apply our construction...
متن کاملComplex Hadamard Matrices and Combinatorial Structures
Forty years ago, Goethals and Seidel showed that if the adjacency algebra of a strongly regular graph X contains a Hadamard matrix then X is of Latin square type or of negative Latin square type [8]. We extend their result to complex Hadamard matrices and find only three additional families of parameters for which the strongly regular graphs have complex Hadamard matrices in their adjacency alg...
متن کاملA Concise Guide to Complex Hadamard Matrices
Complex Hadamard matrices, consisting of unimodular entries with arbitrary phases, play an important role in the theory of quantum information. We review basic properties of complex Hadamard matrices and present a catalogue of inequivalent cases known for the dimensions N = 2, . . . , 16. In particular, we explicitly write down some families of complex Hadamard matrices for N = 12, 14 and 16, w...
متن کاملSelf-dual Z4 codes of Type IV generated by skew-Hadamard matrices and conference matrices
In this paper, we give families of self-dual Z4-codes of Type IV-I and Type IV-II generated by conference matrices and skew-Hadamard matrices. Furthermore, we give a family of self-dual Z4-codes of Type IV-I generated by bordered skew-Hadamard matrices.
متن کامل